Staphylococcal glycocalyx activates macrophage prostaglandin E2 and interleukin 1 production and modulates tumor necrosis factor alpha and nitric oxide production

Author:

Stout R D1,Li Y1,Miller A R1,Lambe D W1

Affiliation:

1. Program in Immunology, James H. Quillen College of Medicine at East Tennessee State University, Johnson City 37614-0579.

Abstract

We have examined the effect of staphylococcal glycocalyces on the ability of murine peritoneal macrophages to produce prostaglandin E2 (PGE2) and the inflammatory cytokines interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) and to generate nitric oxide. Glycocalyx partially purified under endotoxin-free conditions from defined liquid medium cultures of Staphylococcus lugdunensis or Staphylococcus epidermidis was a strong stimulator of PGE2 and IL-1 production. The addition of 10 to 100 micrograms of glycocalyx per ml induced levels of IL-1 and PGE2 production similar to that induced by 0.1 to 1 micrograms of Escherichia coli lipopolysaccharide (LPS) per ml. In contrast, glycocalyx induced ninefold less TNF-alpha and three- to fourfold less nitrite than LPS. A modulatory effect was suggested by the observation that the amount of TNF-alpha and nitrite generated remained constant whether the macrophages were stimulated with 10 or 100 micrograms of glycocalyx per ml. A selective modulation of macrophage activation was confirmed by the demonstration that costimulation of macrophages with both glycocalyx and LPS resulted in a reduction in TNF-alpha and nitrite generation relative to stimulation with LPS alone even though costimulation had no effect on PGE2 production and increased IL-1 production. Involvement of PGE2 in this modulatory effect was suggested by the ability of indomethacin to augment glycocalyx-stimulated TNF-alpha production and to reverse the inhibitory effect of glycocalyx on LPS induction of TNF-alpha production. However, the inability of indomethacin to reverse the inhibitory effect of glycocalyx on LPS-induced nitric oxide generation suggests that the selective modulation of macrophage function by glycocalyx may be more complex than increased sensitivity to PGE2 feedback inhibition.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3