Shr Is a Broad-Spectrum Surface Receptor That Contributes to Adherence and Virulence in Group A Streptococcus

Author:

Fisher Morly1,Huang Ya-Shu2,Li Xueru2,McIver Kevin S.3,Toukoki Chadia2,Eichenbaum Zehava2

Affiliation:

1. Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel

2. Biology Department, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302-4010

3. University of Maryland Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, College Park, Maryland 20742

Abstract

ABSTRACT Group A streptococcus (GAS) is a common hemolytic pathogen that produces a range of suppurative infections and autoimmune sequelae in humans. Shr is an exported protein in GAS, which binds in vitro to hemoglobin, myoglobin, and the hemoglobin-haptoglobin complex. We previously reported that Shr is found in association with whole GAS cells and in culture supernatant. Here, we demonstrate that cell-associated Shr could not be released from the bacteria by the muralytic enzyme mutanolysin and was instead localized to the membrane. Shr was available, however, on the exterior of GAS, exposed to the extracellular environment. In vitro binding and competition assays demonstrated that in addition to hemoprotein binding, purified Shr specifically interacts with immobilized fibronectin and laminin. The absence of typical fibronectin-binding motifs indicates that a new protein pattern is involved in the binding of Shr to the extracellular matrix. Recombinant Lactococcus lactis cells expressing Shr on the bacterial surface gained the ability to bind to immobilized fibronectin, suggesting that Shr can function as an adhesin. The inactivation of shr resulted in a 40% reduction in the attachment to human epithelial cells in comparison to the parent strain. GAS infection elicited a high titer of Shr antibodies in sera from convalescent mice, demonstrating that Shr is expressed in vivo. The shr mutant was attenuated for virulence in an intramuscular zebrafish model system. In summary, this study identifies Shr as being a new microbial surface component recognizing adhesive matrix molecules in GAS that mediates attachment to epithelial cells and contributes to the infection process.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3