Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta ccr5 mutation

Author:

Rana S1,Besson G1,Cook D G1,Rucker J1,Smyth R J1,Yi Y1,Turner J D1,Guo H H1,Du J G1,Peiper S C1,Lavi E1,Samson M1,Libert F1,Liesnard C1,Vassart G1,Doms R W1,Parmentier M1,Collman R G1

Affiliation:

1. Division of Pulmonary and Critical Care, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.

Abstract

The alpha-chemokine receptor fusin (CXCR-4) and beta-chemokine receptor CCR5 serve as entry cofactors for T-cell (T)-tropic and macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively, when expressed with CD4 in otherwise nonpermissive cells. Some M-tropic and dual-tropic strains can also utilize other beta-chemokine receptors, such as CCR2b and CCR3. A mutation of CCR5 (delta ccr5) was recently found to be common in certain populations and appears to confer protection against HIV-1 in vivo. Here, we show that this mutation results in a protein that is expressed intracellularly but not on the cell surface. Primary CD4 T cells from delta ccr5 homozygous individuals were highly resistant to infection with prototype M-tropic HIV-1 strains, including an isolate (YU-2) that uses CCR5 and CCR3, but were permissive for both a T-tropic strain (3B) and a dual-tropic variant (89.6) that uses CXCR-4, CCR5, CCR3, or CCR2b. These cells were also resistant to M-tropic patient isolates but were readily infected by T-tropic patient isolates. Primary macrophages from delta ccr5 homozygous individuals were also resistant to infection with M-tropic strains, including YU-2, but the dual-tropic strain 89.6 was able to replicate in them even though macrophages are highly resistant to CXCR-4-dependent T-tropic isolates. These data show that CCR5 is the essential cofactor for infection of both primary macrophages and T lymphocytes by most M-tropic strains of HIV-1. They also suggest that CCR3 does not function for HIV-1 entry in primary lymphocytes or macrophages, but that a molecule(s) other than CCR5 can support entry into macrophages by certain virus isolates. These studies further define the cellular basis for the resistance to HIV-1 infection of individuals lacking functional CCR5.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3