Cloning, nucleotide sequence, and hybridization studies of the type IIb heat-labile enterotoxin gene of Escherichia coli

Author:

Pickett C L1,Twiddy E M1,Coker C1,Holmes R K1

Affiliation:

1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.

Abstract

Type IIb heat-labile enterotoxin (LT-IIb) is produced by Escherichia coli 41. Restriction fragments of total cell DNA from strain 41 were cloned into a cosmid vector, and one cosmid clone that encoded LT-IIb was identified. The genes for LT-IIb were subcloned into a variety of plasmids, expressed in minicells, sequenced, and compared with the structural genes for other members of the Vibrio cholerae-E. coli enterotoxin family. The A subunits of these toxins all have similar ADP-ribosyltransferase activity. The A genes of LT-IIa and LT-IIb exhibited 71% DNA sequence homology with each other and 55 to 57% homology with the A genes of cholera toxin (CT) and the type I enterotoxins of E. coli (LTh-I and LTp-I). The A subunits of the heat-labile enterotoxins also have limited homology with other ADP-ribosylating toxins, including pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A. The B subunits of LT-IIa and LT-IIb differ from each other and from type I enterotoxins in their carbohydrate-binding specificities. The B genes of LT-IIa and LT-IIb were 66% homologous, but neither had significant homology with the B genes of CT, LTh-I, and LTp-I. The A subunit genes for the type I and type II enterotoxins represent distinct branches of an evolutionary tree, and the divergence between the A subunit genes of LT-IIa and LT-IIb is greater than that between CT and LT-I. In contrast, it has not yet been possible to demonstrate an evolutionary relationship between the B subunits of type I and type II heat-labile enterotoxins. Hybridization studies with DNA from independently isolated LT-II producing strains of E. coli also suggested that additional variants of LT-II exist.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3