Binding-protein-dependent alanine transport in Rhodobacter sphaeroides is regulated by the internal pH

Author:

Abee T1,van der Wal F J1,Hellingwerf K J1,Konings W N1

Affiliation:

1. Department of Microbiology, University of Groningen, Haren, The Netherlands.

Abstract

The properties of an L-alanine uptake system in Rhodobacter sphaeroides were studied and compared with those of H+/lactose symport in R. sphaeroides 4P1, a strain in which the lactose carrier of Escherichia coli has been cloned and functionally expressed (F. E. Nano, Ph.D. thesis, University of Illinois, Urbana, 1984). Previous studies indicated that both transport systems were active only when electron transfer took place in the respiratory or cyclic electron transfer chain, while uptake of L-alanine also required the presence of K+ (M. G. L. Elferink, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1986). The results presented in this paper offer an explanation for these findings. Transport of the nonmetabolizable L-alanine analog 2-alpha-aminoisobutyric acid (AIB) is mediated by a shock-sensitive transport system. The apparently unidirectional uptake of AIB results in accumulation levels which exceed 7 x 10(3). The finding of L-alanine-binding activity in the concentrated crude shock fluid indicates that L-alanine is taken up by a binding-protein-dependent transport system. Transport of the nonmetabolizable lactose analog methyl-beta-D-thiogalactopyranoside (TMG) by the lactose carrier under anaerobic conditions in the dark was observed in cells and membrane vesicles. This indicates that the H+/lactose symport system is active without electron transfer. Uptake of AIB, but not that of TMG, is inhibited by vanadate with a 50% inhibitory concentration of 50 microM, which suggests a role of a phosphorylated intermediate in AIB transport. Uptake of TMG and AIB is regulated by the internal pH. The initial rates of uptake increased with the internal pH, and and pKa values of 7.2 for TMG and 7.8 for AIB. At an internal pH of 7, no AIB uptake occurred, and the rate of TMG uptake was only 30% of the rate at an internal pH of 8. In a previous study, we found that K+ plays an essential role in regulating the internal pH (T. Abee, K. J. Hellingwerf, and W. N. Konings, J. Bacteriol. 170:5647-5653, 1988). The dependence of solute transport in R. sphaeroides on both K+ and activity of an electron transfer chain can be explained by an effect of the internal pH, which subsequently influences the activities of the lactose-and binding-protein-dependent L-alanine transport system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3