Characterization of Binding of Candida albicans to Small Intestinal Mucin and Its Role in Adherence to Mucosal Epithelial Cells

Author:

de Repentigny Louis1,Aumont Francine1,Bernard Karine1,Belhumeur Pierre1

Affiliation:

1. Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal and Sainte-Justine Hospital, Montreal, Quebec H3T 1C5, Canada

Abstract

ABSTRACT In order to approximate and adhere to mucosal epithelial cells, Candida must traverse the overlying mucus layer. Interactions of Candida species with mucin and human buccal epithelial cells (BECs) were thus investigated in vitro. Binding of the Candida species to purified small intestinal mucin showed a close correlation with their hierarchy of virulence. Significant differences ( P < 0.05) were found among three categories of Candida species adhering highly ( C. dubliniensis , C. tropicalis , and C. albicans ), moderately ( C. parapsilosis and C. lusitaniae ) or weakly ( C. krusei and C. glabrata ) to mucin. Adherence of C. albicans to BECs was quantitatively inhibited by graded concentrations of mucin. However, inhibition of adherence was reversed by pretreatment of mucin with pronase or C. albicans secretory aspartyl proteinase Sap2p but not with sodium periodate. Saturable concentration- and time-dependent binding of mucin to C. albicans was abrogated by pronase or Sap2p treatment of mucin but was unaffected by β-mercaptoethanol, sodium periodate, neuraminidase, lectins, or potentially inhibitory sugars. Probing of membrane blots of the mucin with C. albicans revealed binding of the yeast to the 66-kDa cleavage product of the 118-kDa C-terminal glycopeptide of mucin. Although no evidence was found for the participation of C. albicans cell surface mannoproteins in specific receptor-ligand binding to mucin, inhibition of binding by p -nitrophenol (1 mM) and tetramethylurea (0.36 M) revealed that hydrophobic interactions are involved in adherence of C. albicans to mucin. These results suggest that C. albicans may both adhere to and enzymatically degrade mucins by the action of Saps, and that both properties may act to modulate Candida populations in the oral cavity and gastrointestinal tract.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3