Clinical Evaluation of TRCRapid M.TB for Detection of Mycobacterium tuberculosis Complex in Respiratory and Nonrespiratory Specimens

Author:

Tanaka Haruka1,Hirose Haruka1,Kato Yuko1,Kida Saori1,Miyajima Eiji1

Affiliation:

1. Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan

Abstract

ABSTRACT The rapid and accurate diagnosis of tuberculosis is crucial to providing optimal treatment and reducing the spread of infection. We evaluated respiratory and nonrespiratory clinical specimens using a new automated Mycobacterium tuberculosis complex (MTBC) rRNA detection kit (TRCRapid M.TB; Tosoh Bioscience, Tokyo, Japan), which is based on the transcription-reverse transcription concerted reaction (TRC). TRC enables the rapid and completely homogeneous real-time monitoring of isothermal RNA sequence amplification without any postamplification procedures. The results were compared with those obtained by M. tuberculosis culture. A total of 1,155 respiratory specimens and 420 nonrespiratory specimens collected from 1,282 patients were investigated. Of the 45 specimens culture positive for MTBC, 42 were TRC positive, and of the 1,530 specimens culture negative for MTBC, 1,523 were TRC negative. Compared to the results of culture, the overall sensitivity and specificity of TRC were 96.6% and 99.9%, respectively, for respiratory specimens and 87.5% and 98.5%, respectively, for nonrespiratory specimens. The sensitivities of TRC were 100% for smear-positive respiratory and nonrespiratory specimens, 88.9% for smear-negative respiratory specimens, and 80% for smear-negative nonrespiratory specimens. No significant differences in test performance between respiratory and nonrespiratory specimens were observed. The TRC method proved to be clinically useful for the rapid identification of MTBC in respiratory and nonrespiratory specimens and in both smear-positive and smear-negative samples.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3