Presence of Host ICAM-1 in Laboratory and Clinical Strains of Human Immunodeficiency Virus Type 1 Increases Virus Infectivity and CD4 + -T-Cell Depletion in Human Lymphoid Tissue, a Major Site of Replication In Vivo

Author:

Bounou Salim1,Leclerc Jacques E.2,Tremblay Michel J.1

Affiliation:

1. Centre de Recherche en Infectiologie

2. Département d’Otolaryngologie, Centre Hospitalier Universitaire de Québec, Hôpital CHUL, Ste-Foy, Quebec G1V 4G2, Canada

Abstract

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) incorporates several host proteins. Earlier studies have indicated that such foreign constituents can modulate the virus life cycle, although the potential roles that these proteins might play in the viral pathology in vivo remain unclear. In an attempt to shed light on this issue, we first exposed explants of human lymphoid tissue to isogenic viruses except for the presence or absence of host-derived ICAM-1. Incorporation of ICAM-1 alone increased HIV-1 infectivity for human tonsillar tissue cultured ex vivo. This observation was made for viruses bearing distinct coreceptor utilization profiles. Conversion of LFA-1 to a high-affinity-high-avidity state for ICAM-1 further augmented the susceptibility of human tonsillar histocultures to infection by ICAM-1-bearing virions. A more massive depletion of CD4 + T lymphocytes was seen with X4 ICAM-1/POS viruses than with isogenic ICAM-1/NEG virions. Exposure of X4 and R5 primary isolates of HIV-1 to a blocking anti-ICAM-1 antibody resulted in a decrease of virus infection. Finally, X4 and R5 virions derived from a natural human lymphoid tissue microenvironment incorporated high levels of ICAM-1. Altogether, these results indicate that the incorporation of host ICAM-1 can significantly modulate the biology of HIV-1 in a cellular milieu recognized as the major site of replication in vivo and suggest that host proteins found in HIV-1 particles may participate in the pathogenesis of this disease.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3