Complement Component C1q Enhances the Biological Activity of Influenza Virus Hemagglutinin-Specific Antibodies Depending on Their Fine Antigen Specificity and Heavy-Chain Isotype

Author:

Feng Jing Qi1,Mozdzanowska Krystyna1,Gerhard Walter1

Affiliation:

1. The Wistar Institute, Philadelphia, Pennsylvania 19104-4268

Abstract

ABSTRACT We have previously observed that selected influenza virus hemagglutinin (HA)-specific monoclonal antibodies (MAbs) with poor virus-neutralizing (VN) activity in vitro exhibited greatly enhanced VN activity in vivo after administration to SCID mice. The same Abs displayed improved VN activity also when tested in vitro in the presence of noninactivated serum from SCID mice. To identify Ab-dependent properties and serum components that contributed to enhancement of Ab activity, we screened a large panel of HA-specific MAbs for hemagglutination inhibition (HI) in the presence of noninactivated serum from naive mice (NMS). We found that HI activity was enhanced by NMS depending on the Ab’s fine specificity (antigenic region Cb/E > Ca/A,D > Sa,Sb/B), its heavy-chain isotype (immunoglobulin G2 [IgG2] > IgG3; IgG1 and IgM negative), and to some extent also on its derivation (primary response > memory response). On average, the HI activity of Cb/E-specific MAbs of the IgG2 isotype isolated from the primary response was enhanced by 20-fold. VN activity was enhanced significantly but less strongly than HI activity. Enhancement (i) was destroyed by heat inactivation (30 min, 56°C); (ii) did not require C3, the central complement component; (iii) was abolished by treatment of serum with anti-C1q; and (iv) could be reproduced with purified C1q, the binding moiety of C1, the first complement component. We believe that this is the first description of a direct C1q-mediated enhancement of antiviral Ab activities.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3