Mycobacterium tuberculosis Population Structure Determines the Outcome of Genetics-Based Second-Line Drug Resistance Testing

Author:

Streicher E. M.,Bergval I.,Dheda K.,Böttger E. C.,Gey van Pittius N. C.,Bosman M.,Coetzee G.,Anthony R. M.,van Helden P. D.,Victor T. C.,Warren R. M.

Abstract

ABSTRACTThe global emergence of multidrug-resistant tuberculosis has highlighted the need for the development of rapid tests to identify resistance to second-line antituberculosis drugs. Resistance to fluoroquinolones and aminoglycosides develops through nonsynonymous single nucleotide polymorphisms in thegyrAandgyrBgenes and therrsgene, respectively. Using DNA sequencing as the gold standard for the detection of mutations conferring resistance, in conjunction with spoligotyping, we demonstrated heteroresistance in 25% and 16.3% ofMycobacterium tuberculosisisolates resistant to ofloxacin and amikacin, respectively. Characterization of follow-up isolates from the same patients showed that the population structure of clones may change during treatment, suggesting different phases in the emergence of resistance. The presence of underlying mutant clones was identified in isolates which failed to show a correlation between phenotypic resistance and mutation in thegyrAorrrsgene. These clones harbored previously described mutations in either thegyrAorrrsgene, suggesting that rare mutations conferring resistance to ofloxacin or amikacin may not be as important as was previously thought. We concluded that the absence of a correlation between genotypic and phenotypic resistance implies an early phase in the emergence of resistance within the patient. Thus, the diagnostic utility of genetics-based drug susceptibility tests will depend on the proportion of patients whose bacilli are in the process of acquiring resistance in the study setting. These data have implications for the interpretation of molecular and microbiological diagnostic tests for patients with drug-susceptible and drug-resistant tuberculosis who fail to respond to treatment and for those with discordant results.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3