Soluble CD4 and low molecular weight CD4-mimetic compounds sensitize cells to be killed by anti-HIV cytotoxic immunoconjugates

Author:

Pincus Seth H.1ORCID,Stackhouse Megan1,Watt Connie1,Ober Kelli1,Cole Frances M.1,Chen Hung-Ching2,Smith III Amos B.2,Peters Tami1

Affiliation:

1. Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana, USA

2. Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT The reservoir of HIV-infected cells that persist in the face of effective anti-retroviral therapy (ART) is the barrier to curing HIV infection. These long-lived CD4+ cells carry a functional provirus that can become activated upon immune stimulation. When ART is stopped, this leads to a rapid rebound in viremia. A variety of approaches are proposed to eliminate these cells, many dependent upon the expression of virus proteins. We are examining the use of cytotoxic immunoconjugates targeting the HIV envelope protein (Env) as a method to eradicate cells producing virus and have demonstrated that soluble CD4 enhances the cytotoxic effect of gp41-targeted immunoconjugates. Mechanisms include increased antigen exposure and greater internalization of the immunoconjugate. Here we have tested different protein forms of CD4 and the small molecule CD4-mimetic BNM-III-170 for their effects on cells expressing cell-surface Env. Effects studied include sensitization to immunoconjugate killing, cell surface antigen expression, viability, and virus secretion. The CD4 proteins and BNM-III-170 produced comparable effects in these Env-expressing cell lines, each sensitizing cells to cytotoxicity by anti-gp41 immunoconjugates. The results provide further evidence that low molecular weight CD4 mimetics produce biologic effects similar to those caused by soluble CD4 itself and suggest additional therapeutic uses for these molecules. IMPORTANCE HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3