Author:
Paquin C E,Williamson V M
Abstract
The mutation rate to antimycin A resistance was determined for strains of Sacchromyces cerevisiae lacking a functional copy of the structural gene for alcohol dehydrogenase I (ADH1). One type of mutation that can cause antimycin A resistance in these strains is insertion of the transposable element Ty 5' to ADH2, the structural gene for the glucose-repressed isozyme of alcohol dehydrogenase, resulting in expression of this gene during growth on glucose. Here we show that after growth at 15 or 20 degrees C on glucose, 30% of the antimycin A resistance mutations are Ty insertions at ADH2 and another 65% of the mutations are Ty insertions at ADH4, a new locus identified and cloned as described in this paper. At 30 degrees C only 6% of the mutations are Ty insertions at either of these two loci. In addition, we show that the transposition rate is lower in mating-incompetent (a/alpha) cells than in either haploid or diploid mating-competent cells. Our results suggest that under certain conditions Ty transposition may be a major cause of spontaneous mutations in S. cerevisiae.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献