Comamonas testosteroni 3-ketosteroid-delta 4(5 alpha)-dehydrogenase: gene and protein characterization

Author:

Florin C1,Köhler T1,Grandguillot M1,Plesiat P1

Affiliation:

1. Laboratoire de Bactériologie, Faculté de Médecine, Besançon, France.

Abstract

Comamonas testosteroni delta 4(5 alpha)- and delta1-dehydrogenases [delta4(5alpha)- and delta1DH] are key enzymes in the degradation of steroids having an A:B ring fusion in a trans configuration. We previously reported the isolation of the delta1dh gene (P. Plesiat, M. Grandguillot, S. Harayama, S. Vragar, and Y. Michel Briand, J. Bacteriol. 173:7219-7227, 1991). In this study, the gene encoding delta 4(5 alpha)DH was cloned in Escherichia coli on a 16-kbp BamHI fragment by screening a genomic bank of C. testosteroni ATCC 17410 with a probe derived from delta1dh. Subcloning experiments in plasmid pUC19 mapped delta 4(5 alpha)dh immediately downstream of delta1dh. The enzyme was overexpressed 18-fold in cells of E. coli JM109 carrying a 2.5-kbp cloned fragment (plasmid pXE25). However, much higher levels of enzymatic activity (264-fold) were obtained in Pseudomonas putida KT2440, using pMMB208 as an expression vector. Studies with crude lysates of KT2440 showed that delta4(5alpha)DH exhibits higher specificity and higher activity toward delta l-androstene-3,17-dione than toward the saturated derivative 5 alpha-androstane-3,17-dione. The reaction was found to be irreversible and to use efficiently typical flavoprotein electron acceptors; optimal conditions for the enzyme activity were pH 8 and 40 degrees C. Analysis of the nucleotide sequence of the insert of pXE25 revealed an open reading frame of 1,593 bp preceded by a putative ribosome-binding site and followed by a potential transcription terminator. The amino acid sequence of the deduced peptide showed a typical flavin adenine dinucleotide-binding site in its N-terminal region, confirming the flavoproteinic structure of delta 4(5 alpha)DH. The predicted molecular mass was consistent with that of the enzyme expressed in a T7 polymerase system (60 kDa). Alignment between delta 4(5 alpha)dh and delta1dh indicated that both genes, though coding for functionally related enzymes, do not derive from a common ancestor.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference48 articles.

1. Cloning, DNA sequencing and expression of (3-17)betahydroxysteroid dehydrogenase from Pseudomonas testosteroni;Abalain J. H.;J. Steroid Biochem. Mol. Biol.,1993

2. Stereochemistry of C-1,2 dehydrogenation of 5ß-pregnane-3,11,20-trione by Septomyxa affinis;Abul-Hajj Y. J.;J. Biol. Chem.,1972

3. Basic local alignment search tool;Altschul S. F.;J. Mol. Biol.,1990

4. Molecular cloning and sequence determination of the lpd gene encoding lipoamide dehydrogenase from Pseudomonas fluorescens;Benen J. A.;J. Gen. Microbiol.,1989

5. Nucleotide sequence of the gene from the Pseudomonas transposon Tn501 encoding mercuric reductase;Brown N. L.;Biochemistry,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3