Antigenic Characterization of the Fish Pathogen Flavobacterium psychrophilum

Author:

Crump Elizabeth M.1,Perry Malcolm B.2,Clouthier Sharon C.13,Kay William W.13

Affiliation:

1. Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6,1

2. National Research Council, Institute of Biological Sciences, Ottawa K1A 0R6,2 and

3. Microtek International Ltd., Saanichton, British Columbia V8M 1Z8,3Canada

Abstract

ABSTRACT Flavobacteria are a poorly understood and speciated group of commensal bacteria and opportunistic pathogens. The psychrotroph Flavobacterium psychrophilum is the etiological agent of rainbow trout fry syndrome and bacterial cold water disease, septicemic diseases that heavily impact salmonids. Consequently, two verified but geographically diverse isolates were characterized phenotypically and biochemically. A facile typing system was devised which readily discriminated between closely related species and was verified against a pool of recent prospective isolates. F. psychrophilum was found to be enveloped in a loosely attached, strongly antigenic outer layer comprised of a predominant, highly immunogenic, low-molecular-mass carbohydrate antigen as well as several protein antigens. Surface-exposed antigens were visualized by a combination of immunoflourescence microscopy, immunogold transmission, and thin-section electron microscopy and were discriminated by Western blotting using rabbit antisera, by selective extraction with EDTA-polymyxin B agarose beads, and by extrinsic labeling of amines with sulfo– N -hydoxysuccinimide–biotin and glycosyl groups with biotin hydrazide. The predominant ∼16 kDa antigen was identified as low-molecular-mass lipopolysaccharide (LPS), whereas high-molecular-mass LPS containing O antigen was not as prevalent on whole cells but was abundant in culture supernatants. Rainbow trout convalescent antisera recognized both molecular mass classes of LPS as well as a predominant ∼20-kDa protein. This study represents the first description at the molecular level of the surface characteristics and potential vaccine targets of confirmed F. psychrophilum strains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3