Nonspecific DNA binding activity of simian virus 40 large T antigen: evidence for the cooperation of two regions for full activity

Author:

Lin H J1,Upson R H1,Simmons D T1

Affiliation:

1. School of Life and Health Sciences, University of Delaware, Newark 19716.

Abstract

We generated a series of COOH-terminal truncated simian virus 40 large tumor (T) antigens by using oligonucleotide-directed site-specific mutagenesis. The mutant proteins [T(1-650) to T(1-516)] were expressed in insect cells infected with recombinant baculoviruses. T(1-623) and shorter proteins [T(1-621) to T(1-516)] appeared to be structurally changed in a region between residues 269 and 522, as determined by increased sensitivities to trypsin digestion and by altered reactivities to several monoclonal antibodies. These same mutant proteins bound significantly less nonorigin plasmid DNA (15%) and calf thymus DNA (25%) than longer proteins [T(1-625) to T(1-708)]. However, all mutant T antigens exhibited a nearly wild-type level of viral origin-specific DNA binding and binding to a helicase substrate DNA. This indicated that binding to origin and helicase substrate DNAs is separable from about 85% of nonspecific binding to double-stranded DNA. As an independent confirmation that a region distinct from the origin-binding domain (amino acids 147 to 247) is involved in nonspecific DNA binding, we found that up to 96% of this latter activity was specifically inhibited in wild-type T antigen by several monoclonal antibodies which collectively bind to the region between residues 269 and 522. In order to investigate the relationship between the origin-binding domain and the second region, we performed origin-specific DNA binding assays with increasing amounts of calf thymus DNA as competitor. The results suggest that this second region is not an independent nonspecific DNA binding domain. Rather, it most likely cooperates with the origin-binding domain to give rise to wild-type levels of nonspecific DNA binding. Our results further suggest that most of the nonspecific binding to double-stranded DNA is involved in a function other than direct recognition and binding to the pentanucleotides at the replication origin on simian virus 40 DNA.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3