U(VI) Reduction by Diverse Outer Surfacec-Type Cytochromes of Geobacter sulfurreducens

Author:

Orellana Roberto,Leavitt Janet J.,Comolli Luis R.,Csencsits Roseann,Janot Noemie,Flanagan Kelly A.,Gray Arianna S.,Leang Ching,Izallalen Mounir,Mester Tünde,Lovley Derek R.

Abstract

ABSTRACTEarly studies withGeobacter sulfurreducenssuggested that outer-surfacec-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain ofG. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surfacec-type cytochromes ofG. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested thatG. sulfurreducensrequires outer-surfacec-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient uranium sequestration ability and mechanism of live and inactivated strain of Streptomyces sp. HX-1 isolated from uranium wastewater;Environmental Pollution;2024-09

2. Transcriptomic insights unveil the crucial roles of cytochromes, NADH, and pili in Ag(I) reduction by Geobacter sulfurreducens;Chemosphere;2024-06

3. Microbial Nanowires: Future of Bioenergy Applications;Bioprospecting of Microbial Resources for Agriculture, Environment and Bio-chemical Industry;2024

4. Microbial fuel cells as sustainable method of wastewater treatment;Algae Based Bioelectrochemical Systems for Carbon Sequestration, Carbon Storage, Bioremediation and Bioproduct Generation;2024

5. Enrichment and remediation of uranium by microorganisms: A review;Open Journal of Environmental Biology;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3