Role of a Candida albicans P1-Type ATPase in Resistance to Copper and Silver Ion Toxicity

Author:

Riggle Perry J.1,Kumamoto Carol A.1

Affiliation:

1. Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111

Abstract

ABSTRACT Copper ion homeostasis is complicated in that copper is an essential element needed for a variety of cellular processes but is toxic at excess levels. To identify Candida albicans genes that are involved in resistance to copper ion toxicity, a library containing inserts of C. albicans genomic DNA was used to complement the copper sensitivity phenotype of a Saccharomyces cerevisiae cup1 Δ strain that is unable to produce Cup1p, a metallothionein (MT) responsible for high-level copper ion resistance. A P1-type ATPase (CPx type) that is closely related to the human Menkes and Wilson disease proteins was cloned. The gene encoding this pump was termed CRD1 (for copper resistance determinant). A gene encoding a 76-amino-acid MT similar to higher eukaryotic MTs in structure was also cloned, and the gene was termed CRD2 . Transcription of the CRD1 gene was found to increase upon growth with increasing copper levels, while the CRD2 mRNA was expressed at a constant level. Strains with the CRD1 gene disrupted were extremely sensitive to exogenous copper and failed to grow in medium containing 100 μM CuSO 4 . These crd1 strains also exhibited increased sensitivity to silver and cadmium, indicating that Crd1p is somewhat promiscuous with respect to metal ion transport. Although strains with the CRD2 gene disrupted showed reduced growth rate with increasing copper concentration, the crd2 mutants eventually attained wild-type levels of growth, demonstrating that CRD2 is less important for resistance to copper ion toxicity. Crd1p is the first example of a eukaryotic copper pump that provides the primary source of cellular copper resistance, and its ability to confer silver resistance may enhance the prevalence of C. albicans as a nosocomial pathogen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference54 articles.

1. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains;Alani E.;Genetics,1987

2. Ausubel F. Brent R. Kingston R. Moore D. Seidman J. Smith J. Struhl K. Current protocols in molecular biology. 1989 John Wiley & Sons New York N.Y

3. Wilson disease and Menkes disease: new handles on heavy-metal transport;Bull P. C.;Trends Genet.,1994

4. Cloning and expression of a yeast copper metallothionein gene;Butt T. R.;Gene.,1984

5. Copper metallothionein of yeast, structure of the gene, and regulation of expression;Butt T. R.;Proc. Natl. Acad. Sci. USA,1984

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3