Binding of the human immunodeficiency virus type 1 Gag polyprotein to cyclophilin A is mediated by the central region of capsid and requires Gag dimerization

Author:

Colgan J1,Yuan H E1,Franke E K1,Luban J1

Affiliation:

1. Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032USA.

Abstract

The cellular peptidyl-prolyl isomerase cyclophilin A (CyPA) is incorporated into human immunodeficiency virus type 1 (HIV-1) virions via direct contacts with the HIV-1 Gag polyprotein. Disruption of the Gag-CyPA interaction leads to the production of HIV-1 particles lacking CyPA; these virions are noninfectious, indicating that contacts between CyPA and Gag are necessary for HIV-1 replication. Here, we have used the yeast two-hybrid system in conjunction with an in vitro binding assay to identify the minimal domain of Gag required for binding to CyPA. Analysis of a panel of gag deletion mutants in the two-hybrid system indicated that a region spanning the central portion of the capsid (CA) domain was sufficient for interactions with CyPA, but discrepancies between results obtained in different fusion protein contexts suggested that multimerization of Gag might also be necessary for binding to CyPA. Consistent with a requirement for multimerization, the binding of Gag to CyPA in vitro required a region within the nucleocapsid (NC) domain shown previously to be important for Gag self-association. Substitution of a heterologous dimerization motif for the region from NC also promoted specific binding to CyPA, confirming that interactions with CyPA are dependent on Gag multimerization. Fusion of the heterologous dimerization motif to a 100-amino-acid domain from CA was sufficient for binding to CyPA in vitro. These results define the minimal CyPA-binding domain within Gag and provide insight into the mechanism by which CyPA is incorporated into HIV-1 virions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3