Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis

Author:

Guha Shantanu1,Cristy Shane A.1ORCID,Buda De Cesare Giuseppe1,Cruz Melissa R.1ORCID,Lorenz Michael C.1ORCID,Garsin Danielle A.1ORCID

Affiliation:

1. Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA

Abstract

ABSTRACT Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis , EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.

Funder

HHS | NIH | National Institute of Dental and Craniofacial Research

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3