A Single Vaccine Protects against SARS-CoV-2 and Influenza Virus in Mice

Author:

Cao Kangli12,Wang Xiang2,Peng Haoran3,Ding Longfei2,Wang Xiangwei2,Hu Yangyang2,Dong Lanlan1,Yang Tianhan2,Hong Xiujing1,Xing Man4,Li Duoduo2,Zhu Cuisong2,He Xiangchuan1,Zhao Chen2,Zhao Ping3,Zhou Dongming24,Zhang Xiaoyan12,Xu Jianqing12ORCID

Affiliation:

1. Zhongshan Hospital &Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China

2. Shanghai Public Health Clinical Center, Fudan University; Shanghai, P. R. China

3. Department of microbiology, Second military medical university; Shanghai, China

4. Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University; Tianjin, China

Abstract

The ongoing SARS-CoV-2 pandemic posed a severe global threat on public health, as do so by influenza viruses (influenza) and other coronaviruses. Here we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges and effective H3N2 control. We propose our AdC68 vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threat of respiratory virus infection, as do so by influenza A viruses. The currently envisioned strategy for prevention of respiratory virus-causing diseases requires comprehensive administration of vaccines tailored for individual virus. Here we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines targeting both SARS-CoV-2 receptor-binding-domain and conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 as well as its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also entitled a complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3