Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase

Author:

Bender Kelly S.1,Shang Ching2,Chakraborty Romy2,Belchik Sara M.1,Coates John D.2,Achenbach Laurie A.1

Affiliation:

1. Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901

2. Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94598

Abstract

ABSTRACT The reduction of perchlorate to chlorite, the first enzymatic step in the bacterial reduction of perchlorate, is catalyzed by perchlorate reductase. The genes encoding perchlorate reductase ( pcrABCD ) in two Dechloromonas species were characterized. Sequence analysis of the pcrAB gene products revealed similarity to α- and β-subunits of microbial nitrate reductase, selenate reductase, dimethyl sulfide dehydrogenase, ethylbenzene dehydrogenase, and chlorate reductase, all of which are type II members of the microbial dimethyl sulfoxide (DMSO) reductase family. The pcrC gene product was similar to a c -type cytochrome, while the pcrD gene product exhibited similarity to molybdenum chaperone proteins of the DMSO reductase family members mentioned above. Expression analysis of the pcrA gene from Dechloromonas agitata indicated that transcription occurred only under anaerobic (per)chlorate-reducing conditions. The presence of oxygen completely inhibited pcrA expression regardless of the presence of perchlorate, chlorate, or nitrate. Deletion of the pcrA gene in Dechloromonas aromatica abolished growth in both perchlorate and chlorate but not growth in nitrate, indicating that the pcrABCD genes play a functional role in perchlorate reduction separate from nitrate reduction. Phylogenetic analysis of PcrA and other α-subunits of the DMSO reductase family indicated that perchlorate reductase forms a monophyletic group separate from chlorate reductase of Ideonella dechloratans . The separation of perchlorate reductase as an activity distinct from chlorate reductase was further supported by DNA hybridization analysis of (per)chlorate- and chlorate-reducing strains using the pcrA gene as a probe.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3