Addition of Poly(A) and Heteropolymeric 3′ Ends in Bacillus subtilis Wild-Type and Polynucleotide Phosphorylase-Deficient Strains

Author:

Campos-Guillén Juan1,Bralley Patricia2,Jones George H.2,Bechhofer David H.3,Olmedo-Alvarez Gabriela1

Affiliation:

1. Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, México

2. Department of Biology, Emory University, Atlanta, Georgia 30322

3. Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York University, New York, New York 10029

Abstract

ABSTRACT Polyadenylation plays a role in decay of some bacterial mRNAs, as well as in the quality control of stable RNA. In Escherichia coli , poly(A) polymerase I (PAP I) is the main polyadenylating enzyme, but the addition of 3′ tails also occurs in the absence of PAP I via the synthetic activity of polynucleotide phosphorylase (PNPase). The nature of 3′-tail addition in Bacillus subtilis , which lacks an identifiable PAP I homologue, was studied. Sizing of poly(A) sequences revealed a similar pattern in wild-type and PNPase-deficient strains. Sequencing of 152 cloned cDNAs, representing 3′-end sequences of nontranslated and translated RNAs, revealed modified ends mostly on incomplete transcripts, which are likely to be decay intermediates. The 3′-end additions consisted of either short poly(A) sequences or longer heteropolymeric ends with a mean size of about 40 nucleotides. Interestingly, multiple independent clones exhibited complex heteropolymeric ends of very similar but not identical nucleotide sequences. Similar polyadenylated and heteropolymeric ends were observed at 3′ ends of RNA isolated from wild-type and pnpA mutant strains. These data demonstrated that, unlike the case of some other bacterial species and chloroplasts, PNPase of Bacillus subtilis is not the major enzyme responsible for the addition of nucleotides to RNA 3′ ends.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3