Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters

Author:

Sørensen K I1,Baker K E1,Kelln R A1,Neuhard J1

Affiliation:

1. Department of Biological Chemistry, University of Copenhagen, Denmark.

Abstract

Expression of the Salmonella typhimurium pyrC and pyrD genes is regulated in response to fluctuations in the intracellular CTP/GTP pool ratio. The repressive mechanism involves the formation of a stable secondary structure (hairpin) at the 5' ends of the transcripts that precludes translational initiation by sequestering sequences required for ribosomal binding. The potential for hairpin formation is controlled through CTP/GTP-modulated selection of the transcriptional start site. Substitution of nucleotides in the region of transcriptional initiation has revealed that selection of the transcriptional start point in vivo depends on the nucleotide context within the initiation region and the nucleoside triphosphate pool ratios. For maximal control in response to CTP/GTP pool ratios, the wild-type CCGG start site motif appears to be optimal. Changing the -35 region in the pyrC promoter to the consensus sequence, or replacement of the pyrC promoter with the lac promoter from Escherichia coli, has served to illustrate that the ability of the RNA polymerase to select the initiation site in response to the intracellular nucleoside triphosphate pools is not promoter specific but is determined by the kinetic properties of the initiating RNA polymerase during the formation of the first phosphodiester bond of the transcript.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3