A Rabbit Vaginal Cell-Derived Antimicrobial Peptide, RVFHbαP, Blocks Lipopolysaccharide-Mediated Inflammation in Human Vaginal CellsIn Vitro

Author:

Patgaonkar Mandar S.,Sathe Ameya,Selvaakumar C.,Reddy K. V. R.

Abstract

ABSTRACTAntimicrobial peptides (AMPs) constitute a phylogenetically ancient form of innate immunity that provides host defense at various mucosal surfaces, including the vagina. Recently, we have identified one such AMP, rabbit vaginal fluid hemoglobin alpha peptide (RVFHbαP), from the vaginal lavage of rabbits (Oryctolagus cuniculus). The recent demonstration of a protective role of this peptide in erythrocytes and vaginal cells led us to investigate (i) the lipopolysaccharide (LPS) interactive domain in RVFHbαP and (ii) whether RVFHbαP of rabbit origin modulates the cellular immune responses of another species (humans)in vitro. HeLa-S3, a human vaginal epithelial cell line (hVEC), was exposed to LPS alone (10 μg/ml for 6 h), or LPS-induced cells were treated with RVFHbαP (70.45 μM for 1 h) and cultured for 24 h, and the results obtained were compared with the medium control. We show here that RVFHbαP exerts an anti-inflammatory activity in hVECs, as suggested by the prevention of LPS-induced production of extracellular (supernatant) and intracellular (lysate) levels of cytokines (interleukin 6 [IL-6] and IL-1α) and chemokines (IL-8 and monocyte chemoattractant protein 1 [MCP-1]). The demonstration of Toll-like receptor 4 (TLR4) and NF-κB expression in hVECs and the observations of RVFHbαP suppression of human β-defensin-1 (hBD1) mRNA expression further support the hypothesis of a genomic activity of RVFHbαP. Confocal microscopy and flow cytometry results demonstrate that RVFHbαP inhibits LPS-induced phagocytosis ofEscherichia coliby macrophages. The chemotaxis studies performed using the Boyden chamber Transwell method showed the increased migration of U937 cells when supernatants of LPS-induced hVECs were used, and this effect was inhibited by RVFHbαP. In conclusion, our study proposes a novel explanation for the protective role of RVFHbαP in inflammation-associated infections, which not only may provide the new cellular targets for the screening of RVFHbαP ligands acting in the vaginal tissue but also has the potential to develop RVFHbαP as a therapeutic agent for reproductive tract infections.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Reference43 articles.

1. Assessment of cervicovaginal cytokine levels following exposure to microbicide Nisin gel in rabbits;Aranha;Cytokine,2008

2. Measurement of nonopsonic phagocytic killing by human and mouse phagocytes;Bavoil,1994

3. Immunomodulatory activities of small host defense peptides;Bowdish;Antimicrob. Agents Chemother.,2005

4. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford;Anal. Biochem.,1976

5. Invited review: bacterial lipopolysaccharides and innate immunity;Cole;J. Endot. Res.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3