How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria

Author:

Tapia-Torres Yunuen1,Rodríguez-Torres Maria Dolores1,Elser James J.2ORCID,Islas Africa1,Souza Valeria3,García-Oliva Felipe4,Olmedo-Álvarez Gabriela1ORCID

Affiliation:

1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico

2. School of Life Sciences, Arizona State University, Tempe, Arizona, USA

3. Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico

4. Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico

Abstract

ABSTRACT Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and −3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO 3 3− ) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the enzymatic activity associated with P release in soil and sediment. Our results revealed that soil and sediment bacteria can break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Even genetically related bacterial isolates exhibited different preferences for molecules, such as DNA, calcium phosphate, phosphite, and phosphonates, as substrates to obtain P, evidencing a distribution of roles for P utilization and suggesting a dynamic movement of P utilization traits among bacteria in microbial communities.

Funder

CONACYT

PAPIIT-DGAPA-UNAM

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3