Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements

Author:

Kharytonchyk Siarhei1ORCID,Burnett Cleo1,GC Keshav1,Telesnitsky Alice1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, Michigan, USA

Abstract

ABSTRACTHIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses’ properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1’s two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site.IMPORTANCERetroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3