Sequence-Directed Base Mispairing in Human Oncogenes

Author:

Lall Lavanya1,Davidson Richard L.1

Affiliation:

1. Department of Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60612

Abstract

ABSTRACT The most frequently observed mutations in ras oncogenes in solid human tumors are GC→AT transitions at the 3′ G residue of the GG doublet in codon 12 of these oncogenes. We had shown previously that mutagenesis by thymidine occurred with the same sequence specificity in mammalian cells, in that mutagenesis occurred preferentially at the 3′ G of GG doublets. In this study, in vitro DNA synthesis experiments were carried out to assess the effect of local DNA sequence on base mispairing in order to determine the mechanism of sequence-directed mutagenesis by thymidine and its possible relationship to activating point mutations in N-, Ki- and Ha- ras oncogenes in solid human tumors. To avoid complicating the interpretation of the results because of the occurrence of mismatch repair as well as base misincorporation, the experiments were carried out in a repair-free environment with exonuclease-free Klenow polymerase. The results of these experiments showed that misincorporation of deoxyribosylthymine (dT) occurred with several-fold-greater efficiency opposite the 3′ G compared to the 5′ G of the GG doublet in codon 12 of human ras oncogenes. These results further demonstrated that the relative difference in the extent of dT misincorporation opposite the 3′ G and the 5′ G of GG doublets in codon 12 in the various ras oncogenes was affected by the base immediately upstream of the doublet. Within the GG doublet, it was seen that the 5′ G and 3′ G residues had an effect on the extent of dT misincorporation opposite each other. The 5′ G was shown to have a stimulatory effect on dT misincorporation opposite the 3′ G, while the 3′ G was shown to have an inhibitory effect on dT misincorporation opposite the 5′ G. Presumably, these mutual interactions within GG doublets are additive, such that the large differential in dT misincorporation observed between the 3′ G and 5′ G residues in GG doublets is the end result of the combined stimulatory and inhibitory effects within these doublets. Since the observed pattern of dT misincorporation within GG doublets corresponds to the most frequent mode of activation of ras oncogenes in solid human tumors, the results of these experiments suggest that sequence-directed dT misincorporation may be involved in the pattern of activation of human ras oncogenes, by causing GC→AT transitions preferentially at the 3′ G of the GG doublet in codon 12 of these oncogenes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference37 articles.

1. Role of protooncogene activation in carcinogenesis;Anderson W. M.;Environ. Health Perspect.,1992

2. Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance

3. Oncogene activation in chemical carcinogenesis;Balmain A.;Adv. Cancer Res.,1988

4. Ras genes;Barbacid M.;Annu. Rev. Biochem.,1987

5. Ras oncogenes: their role in neoplasia;Barbacid M.;J. Eur. Clin. Invest.,1990

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3