Affiliation:
1. Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
2. Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Abstract
ABSTRACT
Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism
Methanosarcina barkeri
is a metabolically versatile methanogen, which can utilize acetate, methanol, and H
2
/CO
2
to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate
M. barkeri
growth and gene transcription under different substrate regimes. According to the results,
M. barkeri
showed the best growth under methanol, followed by H
2
/CO
2
and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase
hdrBCA
operon in
M. barkeri
. HdrR was able to bind to the
hdrBCA
operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.
IMPORTANCE
The microorganism
Methanosarcina barkeri
has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO
2
concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the
hdrBCA
operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating
hdrBCA
operon transcription in the model methanogen
M. barkeri
. The results clarified that HdrR serves as a regulator of heterodisulfide reductase
hdrBCA
operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.
Funder
MOST | National Natural Science Foundation of China
SPDST | Natural Science Foundation of Sichuan Province
China Postdoctoral Science Foundation
Chinese Academy of Agricultural Sciences
CAAS | Agricultural Science and Technology Innovation Program
Publisher
American Society for Microbiology