Author:
Cao Yi,Li Jie,Jiang Na,Dong Xiuzhu
Abstract
ABSTRACTMethylotrophic methanogenesis predominates at low temperatures in the cold Zoige wetland in Tibet. To elucidate the basis of cold-adapted methanogenesis in these habitats,Methanosarcina mazeizm-15 was isolated, and the molecular basis of its cold activity was studied. For this strain, aceticlastic methanogenesis was reduced 7.7-fold during growth at 15°C versus 30°C. Methanol-derived methanogenesis decreased only 3-fold under the same conditions, suggesting that it is more cold adaptive. Reverse transcription-quantitative PCR (RT-qPCR) detected <2-fold difference in the transcript abundances ofmtaA1,mtaB1, andmtaC1, the methanol methyltransferase (Mta) genes, in 30°C versus 15°C culture, whileackAandptamRNAs, encoding acetate kinase (Ack) and phosphotransacetylase (Pta) in aceticlastic methanogenesis, were 4.5- and 6.8-fold higher in 30°C culture than in 15°C culture. Thein vivohalf-lives ofmtaA1andmtaC1B1mRNAs were similar in 30°C and 15°C cultures. However, thepta-ackAmRNA half-life was significantly reduced in 15°C culture compared to 30°C culture. Using circularized RNA RT-PCR, large 5′ untranslated regions (UTRs) (270 nucleotides [nt] and 238 nt) were identified formtaA1andmtaC1B1mRNAs, while only a 27-nt 5′ UTR was present in thepta-ackAtranscript. Removal of the 5′ UTRs significantly reduced thein vitrohalf-lives ofmtaA1andmtaC1B1mRNAs. Remarkably, fusion of themtaA1ormtaC1B15′ UTRs topta-ackAmRNA increased itsin vitrohalf-life at both 30°C and 15°C. These results demonstrate that the large 5′ UTRs significantly enhance the stability of the mRNAs involved in methanol-derived methanogenesis in the cold-adaptiveM. mazeizm-15.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献