Residues Distal to the Active Site Contribute to Enhanced Catalytic Activity of Variant and Hybrid β-Lactamases Derived from CTX-M-14 and CTX-M-15

Author:

He Dandan,Chiou Jiachi,Zeng Zhenling,Liu Lanping,Chen Xiaojie,Zeng Li,Chan Edward Wai Chi,Liu Jian-Hua,Chen Sheng

Abstract

ABSTRACTA variety of CTX-M-type extended-spectrum β-lactamases (ESBLs), including hybrid ones, have been reported in China that are uncommon elsewhere. To better characterize the substrate profiles and enzymatic mechanisms of these enzymes, we performed comparative kinetic analyses of both parental and hybrid CTX-M enzymes, including CTX-M-15, -132, -123, -64, -14 and -55, that are known to confer variable levels of β-lactam resistance in the host strains. All tested enzymes were susceptible to serine β-lactamase inhibitors, with sulbactam exhibiting the weakest inhibitory effects. CTX-M-55, which differs from CTX-M-15 by one substitution, A77V, displayed enhanced catalytic activity (kcat/Km) against expanded-spectrum cephalosporins (ESCs). CTX-M-55 exhibits higher structure stability, most likely by forming hydrophobic interactions between A77V and various key residues in different helices, thereby stabilizing the core architecture of the helix cluster, and indirectly contributes to a more stable active site conformation, which in turn shows higher catalytic efficiency and is more tolerant to temperature change. Analyses of the hybrids and their parental prototypes showed that evolution from CTX-M-15 to CTX-M-132, CTX-M-123, and CTX-M-64, characterized by gradual enhancement of catalytic activity to ESCs, was attributed to introduction of different substitutions to amino acids distal to the active site of CTX-M-15. Similarly, the increased hydrolytic activities against cephalosporins and sensitivity to β-lactamase inhibitors, clavulanic acid and sulbactam, of CTX-M-64 were partly due to the amino acids that were different from CTX-M-14 and located at both the C and N termini of CTX-M-64. These data indicate that residues distal to the active site of CTX-Ms contributed to their enhanced catalytic activities to ESCs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3