Author:
Whitelaw E,Tsai S F,Hogben P,Orkin S H
Abstract
Erythropoiesis in vertebrates is characterized by sequential changes in erythropoietic site, erythroblast morphology, and hemoglobin synthesis. We have examined the expression of globin chains and the major erythroid transcription factor GATA-1 (previously known as GF-1/NF-E1/Eryf 1) from days 7.5 to 17.5 of mouse development. mRNAs for embryonic (epsilon y2, beta H1, and zeta) and adult (alpha and beta) globin chains were quantitated by RNase protection assays. Switching of globins within the alpha-globin cluster (alpha and zeta) was not strictly coordinated with that within the beta-globin cluster (epsilon y2, beta H1, and beta). Regulation of globin switches during development was primarily transcriptional. Of particular note, we found two developmental switches (beta H1 to epsilon y2 and epsilon y2 to beta) in the mouse, more analogous than previously thought to shifts found in human development. The erythroid transcription factor GATA-1, believed to be a principal regulator of genes expressed in erythroid cells, first appeared in the embryo in yolk sac at the time of blood island formation and remained at a low level during embryonic erythropoiesis (8 to 11 days) relative to that found later in fetal liver (12 to 15 days). The rise in GATA-1 mRNA in fetal liver paralleled and preceded the rapid accumulation of adult beta-globin RNA. RNase protection assays and a GATA-1-specific peptide antiserum were used to establish that a single GATA-1 polypeptide is expressed throughout mouse development. Overall, these findings suggest that the levels of this erythroid transcription factor during development may contribute to the differential gene activation characteristic of definitive versus primitive erythropoiesis.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献