Affiliation:
1. Department of Molecular Medicine, and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
2. Department of Medical Biophysics, University of Toronto, and Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2M9
3. Department of Microbiology & Immunology/Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada B3H 1X5
Abstract
ABSTRACT
Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference55 articles.
1. Asanuma, H., A. H. Thompson, T. Iwasaki, Y. Sato, Y. Inaba, C. Aizawa, T. Kurata, and S. Tamura. 1997. Isolation and characterization of mouse nasal-associated lymphoid tissue. J. Immunol. Methods202:123-131.
2. Aversa, G., C. C. Chang, J. M. Carballido, B. G. Cocks, and J. E. de Vries. 1997. Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J. Immunol.158:4036-4044.
3. Hemagglutinin Protein of Wild-Type Measles Virus Activates Toll-Like Receptor 2 Signaling
4. Bryce, J., C. Boschi-Pinto, K. Shibuya, R. E. Black, and WHO Child Health Epidemiology Reference Group. 2005. WHO estimates of the causes of death in children. Lancet365:1147-1152.
5. Cherry, J. 2003. Measles virus, p. 2283-2304. In C. J. Buck, G. Demmler, and S. Kaplan (ed.), Textbook of pediatric infectious diseases. Elsevier Health Sciences, Philadelphia, PA.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献