Discovery of Novel Peptides Regulating Competence Development in Streptococcus mutans

Author:

Ahn Sang-Joon1,Kaspar Justin1,Kim Jeong Nam1,Seaton Kinda1,Burne Robert A.1

Affiliation:

1. Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA

Abstract

ABSTRACT A MarR-like transcriptional repressor (RcrR) and two predicted ABC efflux pumps (RcrPQ) encoded by a single operon were recently shown to be dominant regulators of stress tolerance and development of genetic competence in the oral pathogen Streptococcus mutans . Here, we focused on polar (Δ rcrR -P) and nonpolar (Δ rcrR -NP) rcrR mutants, which are hyper- and nontransformable, respectively, to dissect the mechanisms by which these mutations impact competence. We discovered two open reading frames (ORFs) in the 3′ end of the rcrQ gene that encode peptides of 27 and 42 amino acids (aa) which are also dramatically upregulated in the Δ rcrR -NP strain. Deletion of, or start codon mutations in, the ORFs for the peptides in the Δ rcrR -NP background restored competence and sensitivity to competence-stimulating peptide (CSP) to levels seen in the Δ rcrR -P strain. Overexpression of the peptides adversely affected competence development. Importantly, overexpression of mutant derivatives of the ABC exporters that lacked the peptides also resulted in impaired competence. FLAG-tagged versions of the peptides could be detected in S. mutans , and FLAG tagging of the peptides impaired their function. The competence phenotypes associated with the various mutations, and with overexpression of the peptides and ABC transporters, were correlated with the levels of ComX protein in cells. Collectively, these studies revealed multiple novel mechanisms for regulation of competence development by the components of the rcrRPQ operon. Given their intimate role in competence and stress tolerance, the rcrRPQ -encoded peptides may prove to be useful targets for therapeutics to diminish the virulence of S. mutans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3