Affiliation:
1. McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706.
Abstract
oriP is the origin of plasmid replication of Epstein-Barr virus. Replication from oriP requires both the cis-acting elements (the family of repeats and the dyad symmetry element) and the viral origin-binding protein, EBNA-1. The ability of plasmids containing oriP to be maintained stably in EBNA-1-positive cells reflects the efficiency both of their replication and of their segregation each cell cycle. The efficiency of plasmid maintenance was determined for plasmids containing derivatives of oriP with one copy of the dyad symmetry element and two copies of the family of repeats by measuring the rate at which they were lost from cells in the absence of selection. These measurements demonstrated that plasmids with derivatives of oriP with two copies of the family of repeats in one orientation are maintained only slightly less efficiently than is wild-type oriP. To determine whether plasmid maintenance could be affected by reinitiation at the dyad symmetry element (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), plasmids containing derivatives of oriP with two copies of the dyad symmetry element and one copy of the family of repeats were compared with plasmids containing wild-type oriP in EBNA-1-positive cells. These measurements showed that plasmids containing a derivative of oriP with two copies of the dyad symmetry element are maintained as efficiently as is wild-type oriP and are not amplified relative to wild-type oriP. These observations indicate that the trans-acting factors that regulate DNA to replicate once per S phase are insensitive to multiple cis-acting regulatory sites within a replicon.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献