v-mos proteins encoded by myeloproliferative sarcoma virus and its ts159 mutant

Author:

Singh B1,Stocking C1,Walker R1,Yang Y D1,Ostertag W1,Arlinghaus R B1

Affiliation:

1. Department of Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston 77030.

Abstract

The myeloproliferative sarcoma virus (MPSV) v-mos protein was predicted to be identical in size to p39c-mos because of an observed one-base deletion in the seventh codon of the env-mos open reading frame, which would allow translation to initiate at the methionine equivalent to codon 32 of the env-mos gene. On the basis of published results, p39c-mos is known to have greatly reduced in vitro protein kinase activity compared with p37env-mos encoded by Moloney murine sarcoma virus. Unexpectedly, the relative activity of the MPSV v-mos protein kinase was comparable to that of p37env-mos. Consistent with this finding, the size of MPSV v-mos protein was found to be similar to the size of p37env-mos. Moreover, the pattern and sizes of phosphorylated bands produced by autophosphorylation of the MPSV v-mos protein were similar to those of p37env-mos. These results were confirmed by in vitro transcription-translation of the MPSV v-mos gene. Resequencing portions of the MPSV mos gene failed to show the deletion within codon 7. Except for the codon 262 deletion, other mutations characteristic of MPSV and temperature-sensitive MPSV v-mos genes were confirmed. A glycine-to-arginine mutation at residue 338 of the MPSV env-mos sequence, previously shown to cause thermosensitivity of the mutant virus (termed ts159) transforming function, yielded a v-mos protein that had significantly reduced protein kinase activity in vitro. These findings indicate that MPSV, like other Moloney murine sarcoma virus strains, also encodes a functional env-mos protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference39 articles.

1. Biologically active mutants with deletions in the v-mos oncogene assayed with retroviral vectors;Bold R. J.;Mol. Cell. Biol.,1985

2. Nucleotide sequence of the transforming gene of ml murine sarcoma virus;Brow M. A. D.;J. Virol.,1984

3. Temperature-dependent cytocidal effects of Moloney murine sarcoma virus;Escobedo J.;Virus Res.,1986

4. Transforming mutant v-mos protein kinases that are deficient in in vitro autophosphorylation;Freeman R. S.;Mol. Cell. Biol.,1989

5. Xenopus homolog of the mos proto-oncogene transforms mammalian fibroblasts and induces maturation of Xenopus oocytes;Freeman R. S.;Proc. Natl. Acad. Sci. USA,1989

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3