The UspA1 Protein and a Second Type of UspA2 Protein Mediate Adherence of Moraxella catarrhalis to Human Epithelial Cells In Vitro

Author:

Lafontaine Eric R.1,Cope Leslie D.1,Aebi Christoph12,Latimer Jo L.1,McCracken George H.2,Hansen Eric J.1

Affiliation:

1. Departments of Microbiology1 and

2. Pediatrics,2 University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048

Abstract

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalis are structurally related, are exposed on the bacterial cell surface, and migrate as very high-molecular-weight complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Previous analysis of uspA1 and uspA2 mutants of M. catarrhalis strain 035E indicated that UspA1 was involved in adherence of this organism to Chang conjunctival epithelial cells in vitro and that expression of UspA2 was essential for resistance of this strain to killing by normal human serum (C. Aebi, E. R. Lafontaine, L. D. Cope, J. L. Latimer, S. R. Lumbley, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 66:3113–3119, 1998). In the present study, isogenic uspA1 , uspA2 , and uspA1 uspA2 mutations were constructed in three additional M. catarrhalis strains: 012E, TTA37, and 046E. The uspA1 mutant of strain 012E had a decreased ability to attach to Chang cells. However, inactivation of the uspA1 gene in both strain TTA37 and strain 046E did not cause a significant decrease in attachment ability. Inactivation of the uspA2 gene of strain TTA37 did result in a loss of attachment ability. Nucleotide sequence analysis revealed that the predicted protein encoded by the uspA2 genes of both strains TTA37 and 046E had a N-terminal half that resembled the N-terminal half of UspA1 proteins, whereas the C-terminal half of this protein was nearly identical to those of previously characterized UspA2 proteins. The gene encoding this “hybrid” protein was designated uspA2H . PCR-based analysis revealed that approximately 20% of M. catarrhalis strains apparently possess a uspA2H gene instead of a uspA2 gene. The M. catarrhalis uspA1 , uspA2 , and uspA2H genes were cloned and expressed in Haemophilus influenzae cells, which were used to prove that both the UspA1 and UspA2H proteins can function as adhesins in vitro.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3