A Single Mating-Type Locus Composed of Homeodomain Genes Promotes Nuclear Migration and Heterokaryosis in the White-Rot Fungus Phanerochaete chrysosporium

Author:

James Timothy Y.1,Lee Maria1,van Diepen Linda T. A.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109

Abstract

ABSTRACT The white-rot basidiomycete fungus Phanerochaete chrysosporium (Agaricomycetes) is a model species that produces potent wood-degrading enzymes. The mating system of the species has been difficult to characterize due to its cryptic fruiting habit and lack of clamp connections in the heterokaryotic phase. By exploiting the draft genome sequence, we reevaluated the mating system of P. chrysosporium by studying the inheritance and segregation of putative mating-type gene homologues, the homeodomain transcription factor genes ( MAT-A ) and the pheromone receptors ( MAT-B ). A pattern of mating incompatibility and fructification consistent with a bipolar system with a single MAT locus was observed, but the rejection response was much weaker than that seen in other agaricomycete species, leading to stable heterokaryons with identical MAT alleles. The homeodomain genes appear to comprise the single MAT locus because they are heterozygous in wild strains and hyperpolymorphic at the DNA sequence level and promote aspects of sexual reproduction, such as nuclear migration, heterokaryon stability, and basidiospore formation. The pheromone receptor loci that might constitute a MAT-B locus, as in many other Agaricomycetes, are not linked to the MAT-A locus and display low levels of polymorphism. This observation is inconsistent with a bipolar mating system that includes pheromones and pheromone receptors as mating-type determinants. The partial uncoupling of nuclear migration and mating incompatibility in this species may be predicted to lead to parasexual recombination and may have contributed to the homothallic behavior observed in previous studies.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3