Affiliation:
1. Department of Medical Microbiology and Immunology
2. Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, Texas 77843-1114
Abstract
ABSTRACT
Coxiella burnetii
, the etiological agent of Q fever, is a gram-negative obligate intracellular bacterium. Two striking characteristics of this microorganism are its ability to thrive within a phagolysosome and its ability to persist in the environment outside a host cell. These abilities have been attributed to the existence of
C. burnetii
developmental cycle variants: large-cell variants (LCV), small-cell variants (SCV), and small dense cells (SDC). Variants differ in protein profiles, including differential expression of a major outer membrane protein (MOMP) of
C. burnetii
, designated P1. The ∼29-kDa MOMP is highly expressed in LCV, down-regulated in SCV, and not apparent in SDC. We sought to characterize P1 through purification of native protein for N-terminal analysis, cloning, and functional studies. Highly purified P1, extracted from
C. burnetii
membranes by using the zwitterionic detergent Empigen, allowed the determination of N-terminal and internal peptide sequences. The entire P1 coding locus was cloned by PCR amplification based upon these peptide sequences, followed by inverse PCR. Comparison of the predicted P1 amino acid sequences among the
C. burnetii
isolates Nine Mile, Koka, Scurry, and Kerns indicated a high degree of conservation. Structural prediction suggests that the peptide has a predominantly β-sheet conformation, consistent with bacterial porins. Typical porin characteristics were observed for native P1, including detergent solubilization properties, heat modification of purified protein, and channel formation in a planar lipid bilayer. Characterization of differentially expressed P1 as a porin increases our understanding of the function of morphological variants and their role in pathogenesis.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献