Heterotrimeric G-Protein Signaling Is Required for Cellulose Degradation in Neurospora crassa

Author:

Collier Logan A.12,Ghosh Arit1,Borkovich Katherine A.12

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA

2. Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, California, USA

Abstract

Filamentous fungi are critical for the recycling of plant litter in the biosphere by degrading lignocellulosic biomass into simpler compounds for metabolism. Both saprophytic and pathogenic fungi utilize plant cell wall-degrading enzymes to liberate carbon for metabolism. Several studies have demonstrated a role for cellulase enzymes during infection of economically relevant crops by fungal pathogens. Especially in developing countries, severe plant disease means loss of entire crops, sometimes leading to starvation. In this study, we demonstrate that G-protein signaling is a key component of cellulase production. Therefore, understanding the role of G-protein signaling in the regulation of the unique metabolism of cellulose by these organisms can inform innovations in strain engineering of industrially relevant species for biofuel production and in combatting food shortages caused by plant pathogens.

Funder

HHS | NIH | National Institute of General Medical Sciences

USDA | National Institute of Food and Agriculture

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3