Preparation of mutants of Trichoderma reesei with enhanced cellulase production

Author:

Montenecourt B S,Eveleigh D E

Abstract

The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3