Genetic evidence for vaccinia virus-encoded DNA polymerase: isolation of phosphonoacetate-resistant enzyme from the cytoplasm of cells infected with mutant virus

Author:

Moss B,Cooper N

Abstract

Phosphonoacetate (PAA), at concentrations of 200 micrograms/ml or more, prevented growth of vaccinia virus in HeLa and BSC-1 cells. Spontaneous vaccinia virus mutants, selected at high PAA levels, were resistant to the antiviral effects of the drug. The action of PAA was directed toward an early viral function, since the drug was inhibitory only during the first 4 h of the approximately 15-h growth cycle. Conversely, significant reversal of the antiviral effects was obtained only when the drug was removed at or before the fourth hour of infection. Incorporation of [3H]thymidine into cytoplasmic viral DNA was severely inhibited in cells infected with wild-type virus but not in cells infected with mutant virus. Virus-induced DNA polymerase isolated from the cytoplasm of cells infected with wild-type or mutant virus had indistinguishable chromatographic properties on DEAE-cellulose and phosphocellulose columns. However, the wild-type enzyme was inhibited by relatively low concentrations of PAA, whereas 10-fold higher concentrations were needed for equivalent inhibition of the mutant enzyme. Kinetic analysis indicated that PAA inhibition was noncompetitive with deoxyribonucleoside triphosphates; Ki values for wild-type and mutant DNA polymerases were approximately 25 and 300 microM, respectively. Inhibition of wild-type DNA polymerase was immediate and complete even when PAA was added after initiation of DNA synthesis in vitro, suggesting that chain elongation was affected. These results established that the DNA polymerase is a target of the antiviral action of PAA and provided genetic evidence that this enzyme is virus encoded.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3