Maintenance of Different Mannitol Uptake Systems during Starvation in Oxidative and Fermentative Marine Bacteria

Author:

Davis Claire L.1,Robb Frank T.1

Affiliation:

1. Department of Microbiology, University of Cape Town, Rondebosch 7700, South Africa

Abstract

The mannitol uptake systems in marine Vibrio and Pseudomonas isolates from the kelp beds off the South African west coast were examined. The fermentative Vibrio isolate possessed a constitutive rapid mannitol uptake system and also a soluble mannitol-1-phosphate dehydrogenase, indicative of a mannitol phosphotransferase system. An inducible, relatively less active mannitol uptake system was detected in the oxidative Pseudomonas isolate, and this strain possessed a mannitol dehydrogenase. The maintenance of these systems during starvation survival was studied. The Vibrio isolate maintained its initial uptake system for approximately 5 weeks of starvation, after which time the uptake system was replaced by one with a higher affinity for mannitol. The mannitol transport system of the Pseudomonas isolate was depressed early in starvation (30 h) but could be readily induced by exogenous mannitol after 6 weeks of starvation. The relative proportions of mannitol which was incorporated and respired were determined in starved Vibrio and Pseudomonas strains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3