Redundant homosexual F transfer facilitates selection-induced reversion of plasmid mutations

Author:

Peters J E1,Bartoszyk I M1,Dheer S1,Benson S A1

Affiliation:

1. Department of Microbiology, University of Maryland at College Park, 20742, USA.

Abstract

F plasmids use surface exclusion to prevent the redundant entry of additional F plasmids during active growth of the host cells. This mechanism is relaxed during stationary phase and nonlethal selections, allowing homosexual redundant plasmid transfer. Homosexual redundant transfer occurs in stationary-phase liquid cultures, within nongrowing populations on solid media, and on media lacking a carbon source. We examined the relationship between homosexual redundant transfer, which occurs between F+ hosts, and reversion of a plasmid-encoded lac mutant allele, lacI33omegalacZ. Sodium dodecyl sulfate (SDS) and mutations that prevent normal transfer to F- cells reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. A recA null mutation reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ mutation. Conversely, a recD null mutation increased redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. These results suggest an explanation for why SDS and these mutations affect reversion of the plasmid lacI33omegalacZ allele. However, a direct causal relationship between transfer and reversion remains to be established. These results suggest that Rec proteins play an active role in redundant transfer and/or that redundant transfer is regulated with the activation of recombination. Redundant homosexual plasmid transfer during a period of stress may represent a genetic response that facilitates evolution of plasmid-encoded functions through mutation, recombination, reassortment, and dissemination of genetic elements present in the populations.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3