Insights into the Selective Pressures Restricting Pelargonium Flower Break Virus Genome Variability: Evidence for Host Adaptation

Author:

Rico Patricia1,Ivars Pilar1,Elena Santiago F.1,Hernández Carmen1

Affiliation:

1. Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain

Abstract

ABSTRACT The molecular diversity of Pelargonium flower break virus (PFBV) was assessed using a collection of isolates from different geographical origins, hosts, and collecting times. The genomic region examined was 1,828 nucleotides (nt) long and comprised the coding sequences for the movement (p7 and p12) and the coat (CP) proteins, as well as flanking segments including the entire 3′ untranslated region (3′ UTR). Some constraints limiting viral heterogeneity could be inferred from sequence analyses, such as the conservation of the amino acid sequences of p7 and of the shell domain of the CP, the maintenance of a leucine zipper motif in p12, and the preservation of a particular folding in the 3′ UTR. A remarkable covariation, involving five specific amino acid sites, was found in the CP of isolates largely propagated in the local lesion host Chenopodium quinoa and in the progeny of a PFBV variant subjected to serial passages in this host. Concomitant with this covariation, up to 30 nucleotide substitutions in a 1,428-nt region of the viral RNA could be attributable to C. quinoa -specific adaptation, representing one of the most outstanding cases of host-driven genome variation for a plant virus. Globally, the results indicate that the selective pressures exerted by the host play a critical role in shaping PFBV populations and that these populations are likely being selected for at both protein and RNA levels.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3