Combinations of Cyclophilin Inhibitor NIM811 with Hepatitis C Virus NS3-4A Protease or NS5B Polymerase Inhibitors Enhance Antiviral Activity and Suppress the Emergence of Resistance

Author:

Mathy Joanna E.1,Ma Sue1,Compton Teresa1,Lin Kai1

Affiliation:

1. Novartis Institutes for Biomedical Research, Inc., 500 Technology Square, Cambridge, Massachusetts 02139

Abstract

ABSTRACT Chronic hepatitis C virus (HCV) infection remains a major global health burden while current interferon-based therapy is suboptimal. Efforts to develop more effective antiviral agents mainly focus on two viral targets: NS3-4A protease and NS5B polymerase. However, resistant mutants against these viral specific inhibitors emerge quickly both in vitro and in patients, particularly in the case of monotherapy. An alternative and complementary strategy is to target host factors such as cyclophilins that are also essential for viral replication. Future HCV therapies will most likely be combinations of multiple drugs of different mechanisms to maximize antiviral activity and to suppress the emergence of resistance. Here, the effects of combining a host cyclophilin inhibitor NIM811 with other viral specific inhibitors were investigated in vitro using HCV replicon. All of the combinations led to more pronounced antiviral effects than any single agent, with no significant increase of cytotoxicity. Moreover, the combination of NIM811 with a nucleoside (NM107) or a non-nucleoside (thiophene-2-carboxylic acid) polymerase inhibitor was synergistic, while the combination with a protease inhibitor (BILN2061) was additive. Resistant clones were selected in vitro with these inhibitors. Interestingly, it was much more difficult to develop resistance against NIM811 than viral specific inhibitors. No cross-resistance was observed among these inhibitors. Most notably, NIM811 was highly effective in blocking the emergence of resistance when used in combination with viral protease or polymerase inhibitors. Taken together, these results illustrate the significant advantages of combining inhibitors targeting both viral and host factors as key components of future HCV therapies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference27 articles.

1. Blight, K. J., A. A. Kolykhalov, and C. M. Rice. 2000. Efficient initiation of HCV RNA replication in cell culture. Science290:1972-1974.

2. Chan, L., O. Pereira, T. J. Reddy, S. K. Das, C. Poisson, M. Courchesne, M. Proulx, A. Siddiqui, C. G. Yannopoulos, N. Nguyen-Ba, C. Roy, D. Nasturica, C. Moinet, R. Bethell, M. Hamel, L. L'Heureux, M. David, O. Nicolas, P. Courtemanche-Asselin, S. Brunette, D. Bilimoria, and J. Bédard. 2004. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: tertiary amides. Bioorg. Med. Chem. Lett.14:797-800.

3. Coelmont L. J. Paeshuyse S. Kaptein I. Vliegen A. Kaul E. De Clercq B. Rosenwirth and R. Crabbe. 2007. The cyclophilin inhibitor DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro and has a unique resistance profile abstr. O-61. 14th International Symposium on Hepatitis C Virus and Related Viruses Glasgow Scotland.

4. Fernandes, F., D. S. Poole, S. Hoover, R. Middleton, A. C. Andrei, J. Gerstner, and R. Striker. 2007. Sensitivity of hepatitis C virus to cyclosporine A depends on nonstructural proteins NS5A and NS5B. Hepatology46:1026-1033.

5. Flisiak, R., A. Horban, P. Gallay, M. Bobardt, S. Selvarajah, A. Wiercinska-Drapalo, E. Siwak, I. Cielniak, J. Higersberger, J. Kierkus, C. Aeschlimann, P. Grosgurin, V. Nicolas-Métral, J. M. Dumont, H. Porchet, R. Crabbé, and P. Scalfaro. 2008. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology47:817-826.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3