Species and condition shape the mutational spectrum in experimentally evolved biofilms

Author:

Hu Guohai123ORCID,Wang Yue124,Liu Xin124,Strube Mikael Lenz5,Wang Bo126,Kovács Ákos T.37ORCID

Affiliation:

1. China National GeneBank, BGI, Shenzhen, China

2. BGI Research, Shenzhen, China

3. Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark

4. BGI Research, Beijing, China

5. Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark

6. Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China

7. Institute of Biology, Leiden University, Leiden, The Netherlands

Abstract

ABSTRACT Laboratory experimental evolution provides a powerful tool for studying microbial adaptation to different environments. To understand the differences and similarities of the dynamic evolutionary landscapes of two model species from the Bacillus genus as they adapt to abiotic and biotic surfaces, we revived the archived population samples from our four previous experimental evolution studies and performed longitudinal whole-population genome sequencing. Surprisingly, higher number of mutations, higher genotypic diversity, and higher evolvability were detected in the biotic conditions with smaller population size. Different adaptation strategies were observed in different environments within each species, with more diversified mutational spectrum detected in biotic conditions. The insertion sequences of Bacillus thuringiensis are critical for its adaptation to the plastic bead-attached biofilm environment, but insertion sequence mobility was a general phenomenon in this species independent of the selection condition. Additionally, certain parallel evolution has been observed across species and environments, particularly when two species adapt to the same environment at the same time. Furthermore, our results suggest that the population size might be an important driver of evolution. Together, these results provide the first comprehensive mutational landscape of two bacterial species’ biofilms that is adapted to an abiotic and biotic surface. IMPORTANCE Biofilm formation is a vital factor for the survival and adaptation of bacteria in diverse environmental niches. Experimental evolution combined with the advancement of whole-population genome sequencing provides us a powerful tool to understand the genomic dynamic of evolutionary adaptation to different environments, such as during biofilm development. Previous studies described the genetic and phenotypic changes of selected clones from experimentally evolved Bacillus thuringiensis and Bacillus subtilis that were adapted under abiotic and biotic biofilm conditions. However, the full understanding of the dynamic evolutionary landscapes was lacking. Furthermore, the differences and similarities of adaptive mechanisms in B. thuringiensis and B. subtilis were not identified. To overcome these limitations, we performed longitudinal whole-population genome sequencing to study the underlying genetic dynamics at high resolution. Our study provides the first comprehensive mutational landscape of two bacterial species’ biofilms that is adapted to an abiotic and biotic surface.

Funder

China National Genebank

Danmarks Grundforskningsfond

Novo Nordisk Fonden

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3