Metagenomic data reveals type I polyketide synthase distributions across biomes

Author:

Singh Hans W.1ORCID,Creamer Kaitlin E.1ORCID,Chase Alexander B.1ORCID,Klau Leesa J.1ORCID,Podell Sheila1ORCID,Jensen Paul R.1ORCID

Affiliation:

1. Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego , La Jolla, California, USA

Abstract

ABSTRACT Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically or otherwise commercially important natural products. Despite extensive discovery efforts, metagenomic analyses suggest that only a small fraction of nature’s polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be further delineated based on their domain organization and the structural features of the compounds they encode. Notably, phylogenetic relationships among ketosynthase (KS) domains provide an effective method to classify the larger and more complex T1PKS genes in which they occur. Increased access to large metagenomic data sets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through their smaller and more tractable KS domain sequences. Here, we used the web tool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse, globally distributed biomes. We found biome-specific separation with soils enriched in KSs from modular cis -acetyltransferase (AT) and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with polyunsaturated fatty acid and enediyne biosynthesis. We linked the phylum Actinobacteria to soil-derived enediyne and cis -AT KSs while marine-derived KSs associated with enediyne and monomodular PKSs were linked to phyla from which the compounds produced by these biosynthetic enzymes have not been reported. These KSs were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting they may be associated with novel structures or enzyme functions. Finally, we employed our metagenome-extracted KS domains to evaluate the PCR primers commonly used to amplify type I KSs and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. IMPORTANCE Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis, coupled with the increased availability of metagenomic sequence data, provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the web tool NaPDoS2 to assess type I polyketide synthase (PKS) diversity and distributions by detecting and classifying ketosynthase (KS) domains across 137 metagenomes. We show that biomes are differentially enriched in type I KS domains, providing a roadmap for future biodiscovery strategies. Furthermore, KS phylogenies reveal biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS data set allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of environmental KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across Earth’s major biomes.

Funder

HHS | National Institutes of Health

National Science Foundation

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3