Informed interpretation of metagenomic data by StrainPhlAn enables strain retention analyses of the upper airway microbiome

Author:

Mostacci Nadja1,Wüthrich Tsering Monika12,Siegwald Léa3ORCID,Kieser Silas3,Steinberg Ruth24,Sakwinska Olga3ORCID,Latzin Philipp4,Korten Insa4,Hilty Markus1ORCID

Affiliation:

1. Institute for Infectious Diseases, University of Bern, Bern, Switzerland

2. Graduate School for Biomedical Science, University of Bern, Bern, Switzerland

3. Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland

4. Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland

Abstract

ABSTRACT Shotgun metagenomic sequencing has the potential to provide bacterial strain-level resolution which is of key importance to tackle a host of clinical questions. While bioinformatic tools that achieve strain-level resolution are available, thorough benchmarking is needed to validate their use for less investigated and low biomass microbiomes like those from the upper respiratory tract. We analyzed a previously published data set of longitudinally collected nasopharyngeal samples from Bangladeshi infants (Microbiota and Health study) and a novel data set of oropharyngeal samples from Swiss children with cystic fibrosis. Data from bacterial cultures were used for benchmarking the parameters of StrainPhlAn 3, a bioinformatic tool designed for strain-level resolution. In addition, StrainPhlAn 3 results were compared with metagenomic assemblies derived from StrainGE and newly derived whole-genome sequencing data. After optimizing the analytical parameters, we compared StrainPhlAn 3 results to culture gold standard methods and achieved sensitivity values of 87% ( Streptococcus pneumoniae ), 80% ( Moraxella catarrhalis ), 75% ( Haemophilus influenzae ), and 57% ( Staphylococcus aureus ) for 420 nasopharyngeal and 75% ( H. influenzae ) and 46% ( S. aureus ) for 260 oropharyngeal samples. Comparing the phylogenetic tree of the core genome of 50 S . aureus isolates with a corresponding marker gene tree generated by StrainPhlAn 3 revealed a striking similarity in tree topology for all but three samples indicating adequate strain resolution. In conclusion, a comparison of StrainPhlAn 3 results to data from bacterial cultures revealed that strain-level tracking of the respiratory microbiome is feasible despite the high content of host DNA when parameters are carefully optimized to fit low biomass microbiomes. IMPORTANCE The usage of 16S rRNA gene sequencing has become the state-of-the-art method for the characterization of the microbiota in health and respiratory disease. The method is reliable for low biomass samples due to prior amplification of the 16S rRNA gene but has limitations as species and certainly strain identification is not possible. However, the usage of metagenomic tools for the analyses of microbiome data from low biomass samples is not straight forward, and careful optimization is needed. In this work, we show that by validating StrainPhlAn 3 results with the data from bacterial cultures, the strain-level tracking of the respiratory microbiome is feasible despite the high content of host DNA being present when parameters are carefully optimized to fit low biomass microbiomes. This work further proposes that strain retention analyses are feasible, at least for more abundant species. This will help to better understand the longitudinal dynamics of the upper respiratory microbiome during health and disease.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3