Serial passage of PDCoV in cell culture reduces its pathogenicity and its damage of gut microbiota homeostasis in piglets

Author:

Zhang Yunfei1ORCID,Si Lulu1,Gao Junlong1,Shu Xiangli1,Qiu Congrui1,Zhang Yue12,Zu Shaopo12,Hu Hui123ORCID

Affiliation:

1. The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China

2. Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China

3. Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China

Abstract

ABSTRACT Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that mainly causes diarrhea in suckling piglets, and also has the potential for cross-species transmission. However, there are still no commercial vaccines available to prevent and control PDCoV infection. In this study, PDCoV strain HNZK-02 was serially propagated in vitro for up to 150 passages and the amino acid changes have mainly occurred in the S protein during serial passage which caused structure change. PDCoV HNZK-02-passage 5 (P5)-infected piglets exhibited acute and severe watery diarrhea, an obvious intestinal damage, while the piglets infected with PDCoV HNZK-02-P150 showed no obvious clinical signs, weak intestinal lesions, and lower viral loads in rectal swabs and various tissues. Compared with the PDCoV HNZK-02-P5 infection, HNZK-02-P150 infection resulted in a decrease in intestinal mucosal permeability and pro-inflammatory cytokines. Moreover, PDCoV HNZK-02-P5 infection had significantly reduced bacterial diversity and increased relative abundance of opportunistic pathogens, while PDCoV HNZK-02-P150 infection did not significantly affect the bacterial diversity, and the relative abundance of probiotics increased. Furthermore, the alterations of gut microbiota were closely related to the change of pro-inflammatory factor. Metagenomics prediction analysis demonstrated that HNZK-02-P150 modulated the tyrosine metabolism, Nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and lipopolysaccharide biosynthesis, which coincided with lower inflammatory response and intestinal permeability in the piglets infected with HNZK-02-P150. In conclusion, the PDCoV HNZK-02 was successfully attenuated by serial passage in vitro , and the changes of S gene, metabolic function, and gut microbiota may contribute to the attenuation. The PDCoV HNZK-02-P150 may have the potential for developing live-attenuated vaccine. IMPORTANCE Porcine deltacoronavirus (PDCoV) is an enteropathogen causing severe diarrhea, dehydration, and death in nursing piglets, devastating great economic losses for the global swine industry, and has cross-species transmission and zoonotic potential. There are currently no approved treatments or vaccines available for PDCoV. In addition, gut microbiota has an important relationship with the development of many diseases. Here, the PDCoV virulent HNZK-02 strain was successfully attenuated by serial passage on cell cultures, and the pathogenesis and effects on the gut microbiota composition and metabolic function of the PDCoV HNZK-02-P5 and P150 strains were investigated in piglets. We also found the genetic changes in the S protein during passage in vitro and the gut microbiota may contribute to the pathogenesis of PDCoV, while their interaction molecular mechanism would need to be explored further.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3