Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer

Author:

Huang Shuo12ORCID,Méheust Raphaël3,Barquera Blanca456,Light Samuel H.12ORCID

Affiliation:

1. Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA

2. Department of Microbiology, University of Chicago, Chicago, Illinois, USA

3. Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France

4. Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA

5. Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA

6. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA

Abstract

ABSTRACT Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models. IMPORTANCE This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule—a compound related to vitamin B2—is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3